Semantic Role Labeling of Implicit Arguments for Nominal Predicates

نویسندگان

  • Matthew Gerber
  • Joyce Yue Chai
چکیده

Nominal predicates often carry implicit arguments. Recent work on semantic role labeling has focused on identifying arguments within the local context of a predicate; implicit arguments, however, have not been systematically examined. To address this limitation, we have manually annotated a corpus of implicit arguments for ten predicates from NomBank. Through analysis of this corpus, we find that implicit arguments add 71% to the argument structures that are present in NomBank. Using the corpus, we train a discriminative model that is able to identify implicit arguments with an F1 score of 50%, significantly outperforming an informed baseline model. This article describes our investigation, explores a wide variety of features important for the task, and discusses future directions for work on implicit argument identification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEMANTIC ROLE LABELING OF IMPLICIT ARGUMENTS FOR NOMINAL PREDICATES By

SEMANTIC ROLE LABELING OF IMPLICIT ARGUMENTS FOR NOMINAL PREDICATES

متن کامل

Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments

Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a seq...

متن کامل

A Joint Model of Implicit Arguments for Nominal Predicates

Many prior studies have investigated the recovery of semantic arguments for nominal predicates. The models in many of these studies have assumed that arguments are independent of each other. This assumption simplifies the computational modeling of semantic arguments, but it ignores the joint nature of natural language. This paper presents a preliminary investigation into the joint modeling of i...

متن کامل

Can Selectional Preferences Help Automatic Semantic Role Labeling?

We describe a topic model based approach for selectional preference. Using the topic features generated by an LDA model on the extracted predicate-arguments over the Chinese Gigaword corpus, we show improvement to our state-of-the-art Chinese SRL system by 2.34 F1 points on arguments of nominal predicates, 0.40 F1 point on arguments of verb predicates, and 0.66 F1 point overall. More over, simi...

متن کامل

Beyond NomBank: A Study of Implicit Arguments for Nominal Predicates

Despite its substantial coverage, NomBank does not account for all withinsentence arguments and ignores extrasentential arguments altogether. These arguments, which we call implicit, are important to semantic processing, and their recovery could potentially benefit many NLP applications. We present a study of implicit arguments for a select group of frequent nominal predicates. We show that imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Linguistics

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2012